Introduction to Thermodynamics -University of Michigan

  • Thermodynamics intro
  • u-m-university-of-michigan-logo
Thermodynamics intro
u-m-university-of-michigan-logo

This course provides an introduction to the most powerful engineering principles you will ever learn – Thermodynamics: the science of transferring energy from one place or form to another place or form. We will introduce the tools you need to analyze energy systems from solar panels, to engines, to insulated coffee mugs. More specifically, we will cover the topics of mass and energy conservation principles; first law analysis of control mass and control volume systems; properties and behavior of pure substances; and applications to thermodynamic systems operating at steady state conditions.

Created by:  University of Michigan
university_of_michigan

Taught by:  Margaret Wooldridge, Ph.D., Arthur F. Thurnau Professor
Mechanical Engineering, Aerospace Engineering

Level: Beginner

Course Duration: 12 hours of videos and quizzes

Language: English

How To Pass: Pass all graded assignments to complete the course.

Syllabus: 

WEEK 1
In this module, we frame the context of energy and power supply and demand around the world. You will learn that understanding and correctly using units are critical skills for successfully analyzing energy systems. It is also important to be able to identify and categorize systems as “open” or “closed” and “steady state” or “transient”. Thermodynamics is a topic that is very notation intense, but the notation is very helpful as a check on our assumptions and our mathematics. Additionally, in this module we will refresh our understanding of some common thermodynamic properties.
6 videos1 reading
Graded: Week 1

WEEK 2
In this module, we will get started with the fundamental definitions for energy transfer, including the definitions of work transfer and heat transfer. We will also show (by example) how state diagrams are valuable for explaining energy transfer processes. Then, we have all the tools we need to define the 1st Law of Thermodynamics also called the Conservation of Energy. Your second assignment will emphasize these principles and skills.
6 videos
Graded: Week 2

WEEK 3
In this module, we introduce our first abstract concepts of thermodynamics properties – including the specific heats, internal energy, and enthalpy. It will take some time for you to become familiar with what these properties represent and how we use these properties. For example, internal energy and enthalpy are related to temperature and pressure, but they are two distinct thermodynamic properties. One of the hardest concepts of thermodynamics is relating the independent thermodynamic properties to each other. We have to become experts at these state relations in order to be successful in our analysis of energy systems. There are several common approximations, including the ideal gas model, which we will use in this class. The key to determining thermodynamic properties is practice, practice, practice! Do as many examples as you can.
6 videos
Graded: Week 3

WEEK 4
In this module we introduce the combined application of the Conservation of Mass and the Conservation of Energy for system analysis. We also review the common assumptions for typical energy transfer devices, like heat exchangers, pumps and turbines. Together these components will form the basis for all power plants used around the world.
6 videos
Graded: Week 4

WEEK 5
In this module, we tackle some of the most difficult systems to analyze – transient or time-varying systems. Any system where the energy transfer changes as a function of time require transient analysis. Not only are these difficult problems to analyze, they are also difficult systems to design and interrogate. Some important transient problems include the start-up of a gas turbine or an internal combustion engine. Such transients are becoming more integral to the electrical power grid due to the introduction of more renewable power sources which are also more intermittent. These are very relevant and timely topics for the stationary power sector.
5 videos
Graded: Week 5

WEEK 6
In this module, we introduce some of the concepts of the Second Law of Thermodynamics. We will only discuss a small fraction of the vast material that falls under the topic of the Second Law. I encourage you to explore beyond our course material for very interesting discussions on the outcomes of the Second Law which include entropy, the absolute temperature scale and Carnot cycles. The most important aspect for our class, is that the Second Law provides a basis for defining the theoretical maximums and minimums for processes. Using these limits, we can define device and system efficiencies. We demonstrate these limits with examples of basic power plants. A good “take-home” exercise is to apply these limits to some of the devices and systems you see every day around you
6 videos
Graded: Week 6

WEEK 7
In this module we focus on in-depth analysis of a Rankine power plant. The Rankine power plant is the fundamental design for stationary power generation when the working fluid is water (or steam) and the energy carrier is nuclear, coal, gas, or thermal solar power. We also learn that conventional power plants generate a lot of waste heat! Co-generation is a great way to use that waste heat. Can you think of a few ways you might capture waste heat and use it productively? Then you might have your next environmentally sustainable business venture!
6 videos
Graded: Week 7

WEEK 8
In this module, we have a brief discussion of energy carriers – including fossil fuels and battery materials. These lectures highlight the thermodynamic properties of these energy carriers and storage materials that make these systems so attractive and at the same time, so difficult to replace. As this is our last module of the course, I hope you have enjoyed this Introduction to Thermodynamics and that you have learned some new skills. Good luck on all your adventures in energy systems!,
6 videos1 reading
Graded: Week 8

How It Works:
COURSEWORK
Each course is like an interactive textbook, featuring pre-recorded videos, quizzes and projects.

HELP FROM YOUR PEERS
Connect with thousands of other learners and debate ideas, discuss course material, and get help mastering concepts.

CERTIFICATES
Earn official recognition for your work, and share your success with friends, colleagues, and employers

Leave Comment

Limited quantity!
0 bought

Free ₹1,889.00

  • Value

    ₹1,889.00
  • Discount

    100%
  • You save

    ₹1,889.00

In Short

This course provides an introduction to the most powerful engineering principles you will ever learn – Thermodynamics: the science of transferring energy from one place or form to another place or form. We will introduce the tools you need to analyze energy systems from solar panels, to engines, to insulated coffee mugs. More specifically, we

Share